AI Places Confidential Health Information at Risk
By HospiMedica International staff writers Posted on 21 Jan 2019 |
Advances in artificial intelligence (AI) technologies, such as those incorporated into activity trackers, smartphones, and smartwatches, can threaten the privacy of personal health data.
Researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), the University of California Berkeley (UCB; USA), and other institutions conducted a cross-sectional study of U.S. National Health and Nutrition Examination Survey (NHANES) data sets to evaluate the feasibility of reidentifying accelerometer-measured physical activity data, which have had geographic and protected health information removed, using support vector machines (SVMs) and random forest machine learning methods.
The accelerometer-measured data were collected for seven continuous days, with the primary outcome being the ability of the random forest and linear SVM algorithms to match demographic and aggregated physical activity data to individual-specific record numbers, and the percentage of correct matches made by each algorithm. The results showed that random forest algorithm successfully reidentified the demographic and aggregated physical activity data of an average of 94% of the adults and 86% of the children. The linear SVM algorithm successfully reidentified demographic and physical activity data of 85% of the adults and 68% of the children. The study was published on December 21, 2018, in JAMA Network Open.
“The results point out a major problem; if you strip all the identifying information, it doesn't protect you as much as you'd think. Someone else can come back and put it all back together if they have the right kind of information,” said senior author Anil Aswani, PhD, of UCB, and colleagues. “You could imagine Facebook gathering step data from the app on your smartphone, then buying health care data from another company and matching the two. They could either start selling advertising based on that or they could sell the data to others.”
“Employers, mortgage lenders, credit card companies and others could potentially use AI to discriminate based on pregnancy or disability status, for instance. What I'd like to see from this are new regulations or rules that protect health data; but there is actually a big push to even weaken the regulations right now,” concluded Dr. Aswani. “The risk is that if people are not aware of what's happening, the rules we have will be weakened. And the fact is the risks of us losing control of our privacy when it comes to health care are actually increasing and not decreasing.”
Random forests are an ensemble learning method that combines a large number of decision trees to make predictions. Although random forest models are difficult to interpret, this approach is one of the most successful machine learning techniques because it often has the highest accuracy. Linear SVM is a popular classification algorithm that has fast computation speed, is easily interpretable, and has good accuracy.
Related Links:
Massachusetts Institute of Technology
University of California Berkeley
Researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), the University of California Berkeley (UCB; USA), and other institutions conducted a cross-sectional study of U.S. National Health and Nutrition Examination Survey (NHANES) data sets to evaluate the feasibility of reidentifying accelerometer-measured physical activity data, which have had geographic and protected health information removed, using support vector machines (SVMs) and random forest machine learning methods.
The accelerometer-measured data were collected for seven continuous days, with the primary outcome being the ability of the random forest and linear SVM algorithms to match demographic and aggregated physical activity data to individual-specific record numbers, and the percentage of correct matches made by each algorithm. The results showed that random forest algorithm successfully reidentified the demographic and aggregated physical activity data of an average of 94% of the adults and 86% of the children. The linear SVM algorithm successfully reidentified demographic and physical activity data of 85% of the adults and 68% of the children. The study was published on December 21, 2018, in JAMA Network Open.
“The results point out a major problem; if you strip all the identifying information, it doesn't protect you as much as you'd think. Someone else can come back and put it all back together if they have the right kind of information,” said senior author Anil Aswani, PhD, of UCB, and colleagues. “You could imagine Facebook gathering step data from the app on your smartphone, then buying health care data from another company and matching the two. They could either start selling advertising based on that or they could sell the data to others.”
“Employers, mortgage lenders, credit card companies and others could potentially use AI to discriminate based on pregnancy or disability status, for instance. What I'd like to see from this are new regulations or rules that protect health data; but there is actually a big push to even weaken the regulations right now,” concluded Dr. Aswani. “The risk is that if people are not aware of what's happening, the rules we have will be weakened. And the fact is the risks of us losing control of our privacy when it comes to health care are actually increasing and not decreasing.”
Random forests are an ensemble learning method that combines a large number of decision trees to make predictions. Although random forest models are difficult to interpret, this approach is one of the most successful machine learning techniques because it often has the highest accuracy. Linear SVM is a popular classification algorithm that has fast computation speed, is easily interpretable, and has good accuracy.
Related Links:
Massachusetts Institute of Technology
University of California Berkeley
Latest Health IT News
- Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients
- Strategic Collaboration to Develop and Integrate Generative AI into Healthcare
- AI-Enabled Operating Rooms Solution Helps Hospitals Maximize Utilization and Unlock Capacity
- AI Predicts Pancreatic Cancer Three Years before Diagnosis from Patients’ Medical Records
- First Fully Autonomous Generative AI Personalized Medical Authorizations System Reduces Care Delay
- Electronic Health Records May Be Key to Improving Patient Care, Study Finds
- AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease
- First-Ever AI Test for Early Diagnosis of Alzheimer’s to Be Expanded to Diagnosis of Parkinson’s Disease
- New Self-Learning AI-Based Algorithm Reads Electrocardiograms to Spot Unseen Signs of Heart Failure
- Autonomous Robot Performs COVID-19 Nasal Swab Tests
- Statistical Tool Predicts COVID-19 Peaks Worldwide
- Wireless-Controlled Soft Neural Implant Stimulates Brain Cells
- Tiny Polymer Stent Could Treat Pediatric Urethral Strictures
- Human Torso Simulator Helps Design Brace Innovations
- 3D Bioprinting Rebuilds the Human Heart
- Nanodrone Detects Toxic Gases in Hazardous Environments
Channels
Critical Care
view channel
Deep-Learning Model Predicts Arrhythmia 30 Minutes before Onset
Atrial fibrillation, the most common type of cardiac arrhythmia worldwide, affected approximately 59 million people in 2019. Characterized by an irregular and often rapid heart rate, atrial fibrillation... Read more
Breakthrough Technology Combines Detection and Treatment of Nerve-Related Disorders in Single Procedure
The peripheral nervous system (PNS) serves as the communication network that links the brain and spinal cord to every other part of the body. It consists of two parts: the somatic nervous system, which... Read moreSurgical Techniques
view channel
Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices
The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more
Wearable Technology Monitors and Analyzes Surgeons' Posture during Long Surgical Procedures
The physical strain associated with the static postures maintained by neurosurgeons during long operations can lead to fatigue and musculoskeletal problems. An objective assessment of surgical ergonomics... Read more.jpg)
Custom 3D-Printed Orthopedic Implants Transform Joint Replacement Surgery
The evolving field of 3D printing is revolutionizing orthopedics, especially for individuals requiring joint replacement surgeries where traditional implants fail to provide a solution. Although most people... Read more
Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery
Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read morePatient Care
view channel
Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization
An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more
Game-Changing Innovation in Surgical Instrument Sterilization Significantly Improves OR Throughput
A groundbreaking innovation enables hospitals to significantly improve instrument processing time and throughput in operating rooms (ORs) and sterile processing departments. Turbett Surgical, Inc.... Read more
Next Gen ICU Bed to Help Address Complex Critical Care Needs
As the critical care environment becomes increasingly demanding and complex due to evolving hospital needs, there is a pressing requirement for innovations that can facilitate patient recovery.... Read more
Groundbreaking AI-Powered UV-C Disinfection Technology Redefines Infection Control Landscape
Healthcare-associated infection (HCAI) is a widespread complication in healthcare management, posing a significant health risk due to its potential to increase patient morbidity and mortality, prolong... Read moreHealth IT
view channel
Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients
Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more
Strategic Collaboration to Develop and Integrate Generative AI into Healthcare
Top industry experts have underscored the immediate requirement for healthcare systems and hospitals to respond to severe cost and margin pressures. Close to half of U.S. hospitals ended 2022 in the red... Read more
AI-Enabled Operating Rooms Solution Helps Hospitals Maximize Utilization and Unlock Capacity
For healthcare organizations, optimizing operating room (OR) utilization during prime time hours is a complex challenge. Surgeons and clinics face difficulties in finding available slots for booking cases,... Read more
AI Predicts Pancreatic Cancer Three Years before Diagnosis from Patients’ Medical Records
Screening for common cancers like breast, cervix, and prostate cancer relies on relatively simple and highly effective techniques, such as mammograms, Pap smears, and blood tests. These methods have revolutionized... Read morePoint of Care
view channel
Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing
Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Point of Care HIV Test Enables Early Infection Diagnosis for Infants
Early diagnosis and initiation of treatment are crucial for the survival of infants infected with HIV (human immunodeficiency virus). Without treatment, approximately 50% of infants who acquire HIV during... Read more
Whole Blood Rapid Test Aids Assessment of Concussion at Patient's Bedside
In the United States annually, approximately five million individuals seek emergency department care for traumatic brain injuries (TBIs), yet over half of those suspecting a concussion may never get it checked.... Read more
New Generation Glucose Hospital Meter System Ensures Accurate, Interference-Free and Safe Use
A new generation glucose hospital meter system now comes with several features that make hospital glucose testing easier and more secure while continuing to offer accuracy, freedom from interference, and... Read moreBusiness
view channel
Johnson & Johnson Acquires Cardiovascular Medical Device Company Shockwave Medical
Johnson & Johnson (New Brunswick, N.J., USA) and Shockwave Medical (Santa Clara, CA, USA) have entered into a definitive agreement under which Johnson & Johnson will acquire all of Shockwave’s... Read more