We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Machine Learning Algorithm Trained on Images of Everyday Items Detects COVID-19 in Chest X-Rays with 99% Accuracy

By HospiMedica International staff writers
Posted on 29 Jun 2021
Print article
Illustration
Illustration
New research using machine learning on images of everyday items is improving the accuracy and speed of detecting respiratory diseases, reducing the need for specialist medical expertise.

In a study by researchers at Edith Cowan University (Perth, Australia), the results of this technique, known as transfer learning, achieved a 99.24% success rate when detecting COVID-19 in chest X-rays. The study tackles one of the biggest challenges in image recognition machine learning: algorithms needing huge quantities of data, in this case images, to be able to recognize certain attributes accurately.

According to the researchers, this was incredibly useful for identifying and diagnosing emerging or uncommon medical conditions. The key to significantly decreasing the time needed to adapt the approach to other medical issues was pre-training the algorithm with the large ImageNet database. The researchers hope that the technique can be further refined in future research to increase accuracy and further reduce training time.

"Our technique has the capacity to not only detect COVID-19 in chest x-rays, but also other chest diseases such as pneumonia. We have tested it on 10 different chest diseases, achieving highly accurate results," said ECU School of Science researcher Dr. Shams Islam. "Normally, it is difficult for AI-based methods to perform detection of chest diseases accurately because the AI models need a very large amount of training data to understand the characteristic signatures of the diseases. The data needs to be carefully annotated by medical experts, this is not only a cumbersome process, it also entails a significant cost. Our method bypasses this requirement and learns accurate models with a very limited amount of annotated data. While this technique is unlikely to replace the rapid COVID-19 tests we use now, there are important implications for the use of image recognition in other medical diagnoses."

Related Links:
Edith Cowan University

Platinum Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
Portable Jaundice Management Device
Nymphaea
Infrared Digital Thermometer
R1B1

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more