We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

HospiMedica

Download Mobile App
Recent News AI Critical Care Surgical Techniques Patient Care Health IT Point of Care Business Focus

Tiny Surgical Robot Travels Deep Into Lungs to Detect and Treat Cancer

By HospiMedica International staff writers
Posted on 28 Jul 2023
Print article
Image: Close-up of a magnetic tentacle robot next to a phantom bronchiole (Photo courtesy of University of Leeds)
Image: Close-up of a magnetic tentacle robot next to a phantom bronchiole (Photo courtesy of University of Leeds)

Lung cancer currently holds the grim distinction of being the leading cause of cancer deaths globally. The majority of these cases, approximately 84%, are early-stage non-small cell lung cancer for which surgery is the standard treatment. However, the highly invasive nature of such procedures, often involving significant tissue removal, renders it unsuitable for all patients and can adversely impact lung function. The introduction of lung cancer screening programs has improved survival rates but also emphasized the critical need for non-invasive diagnostic and treatment methods. Now, researchers have created a miniature robot capable of traveling deep into the lungs to identify and treat early signs of cancer. This remarkably small, ultra-soft, magnetically controlled tentacle, merely two millimeters in diameter, can access the smallest bronchial tubes, potentially revolutionizing lung cancer treatment by allowing a more precise, personalized, and minimally invasive approach.

The magnetic tentacle robot, developed by engineers, scientists and clinicians based at the University of Leeds’ (West Yorkshire, UK) STORM Lab was tested on cadaver lungs. The researchers discovered that it can travel 37% deeper into the lungs compared to standard equipment, causing less tissue damage. The robot not only enhances navigation during lung biopsies but also paves the way for significantly less invasive treatments. This technology allows medical professionals to specifically target harmful cells while sparing healthy tissues and organs, thus preserving normal function. The team's next goal is to gather the necessary data to initiate human trials.

“This is a really exciting development,” said Professor Pietro Valdastri, Director of the STORM Lab and research supervisor. “This new approach has the advantage of being specific to the anatomy, softer than the anatomy and fully shape-controllable via magnetics. These three main features have the potential to revolutionize navigation inside the body.”

“Our goal was, and is, to bring curative aid with minimal pain for the patient,” added Dr. Giovanni Pittiglio, who carried out the research while conducting his PhD. “Remote magnetic actuation enabled us to do this using ultra-soft tentacles which can reach deeper, while shaping to the anatomy and reducing trauma.”

Related Links:
University of Leeds 

Platinum Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Blood Bank Refrigerator
MBR-705GR-PE
Infrared Digital Thermometer
R1B1

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more